[[Research Program]] [[People:Start| People]] [[Internships and Lab Rotations]] [[Publications]] [[Teaching]] [[Methodenboek]] [[Contact]]

**This is an old revision of the document!** ----

A PCRE internal error occured. This might be caused by a faulty plugin

===== Who controls the attentional enhancement of targets, the blocking of distracters, and the resolution of conflict? ===== One of the things that distinguishes humans from lower animals is their ability to select task-relevant information in cluttered sensory environments. This ability goes beyond merely selecting the information to which one has to respond; it also involves the ability to deal with the conflict that emerges when multiple stimuli elicit incompatible responses. This response conflict results from insufficient selection between the different stimuli. Of course, at some point, this conflict has be resolved; otherwise, no response would be given. The dominant view is that the conflict is resolved by a stronger stimulus selection (i.e., enhancing task-relevant information and blocking distractors). One of the central questions in cognitive neuroscience is how the brain achieves this selective gating of sensory information in interaction with the detection of response conflict. A dominant view is that neuronal oscillations play a central role in this gating of sensory information. This starts from the common observation of alpha band (8-14 Hz) oscillations over posterior (occipito-parietal) areas and alpha- and beta band (15-25 Hz) oscillations over sensorimotor areas. With respect to the functional role of these oscillations, the dominant view involves that high amplitude neuronal oscillations block the sensory input (visual for the posterior and somatosensory for the sensorimotor areas) whereas low amplitude oscillations allow the sensory input to be transferred to the downstream areas that are responsible for cognitive control and motor output. These observations have led to the view that low amplitude neuronal oscillations allow the sensory input to be transferred to their downstream targets whereas high amplitude neural oscillations block the sensory input. The question now is, via which mechanism this gating of sensory input is controlled. The dominant view here is that frontal cortical areas are responsible for this, and this view is consistent with the fact that fMRI studies of attentional control show a robust involvement of these frontal cortical areas. Compared to fMRI studies, there is only limited evidence from electrophysiological studies showing the involvement of frontal cortical areas in the modulation of neural oscillations over sensory input areas. Two recent magnetoencephalography studies are exceptions to this rule ([[http://www.sciencemag.org/content/344/6182/424.short|Baldauf & Desimone, 2014]]; [[http://www.jneurosci.org/content/35/5/2074.short|Sacchet et al, 2015]]), and both found evidence for oscillatory coupling between the right inferior frontal cortex (rIFG) and different sensory areas (S1 in Sacchet et al, 2015; fusiform face area and parahippocampal place area in Baldauf & Desimone, 2014). However, this view is based on studies with important limitations: - The studies that investigated attentional control did not allow to distinguish between target enhancement and distractor blocking. In this study, we will identify the brain areas that control target enhancement, distracter blocking, and conflict resolution. In our experiment, the participant fixates the center of the screen while stimulus streams are presented in the left and the right visual field. The participant responds using two buttons, one for his left and one for his right hand. One of the two buttons has to be pressed depending on the content of the attended stimulus streams, as explained in the following. By means of a cue, one of these two streams will be indicated as the task-relevant one, and the other one will be the distracter. The streams are continuously present but their content varies over time. The content are symbols belonging to one of three different categories associated with the button press: //press left//, //press right//, and //don't press//. The participant's task is to respond as quickly as possible when a //press left// or a //press right// symbol shows up in the attended stream. By shortening the presentation time and by means of feedback, response speed will be stressed, thereby increasing the probability of an error. The data will be analyzed by first selecting relevant fixed-length epochs from the electrophysiological data: (1) epochs centered at stimulus events in which **one** of the streams shows a //press// symbol, separately for the attended and the non-attended stream, and (2) epochs centered at stimulus events in which **both** of the streams show a //press// symbol, separately for congruent (same response button indicated) and incongruent (different response buttons indicated) symbol pairs. This produces four conditions that will be compared on the combined behavioural-electrophysiological data. This project will be supervised by Eric Maris.